Peritrichous flagella of Thiovulum majus

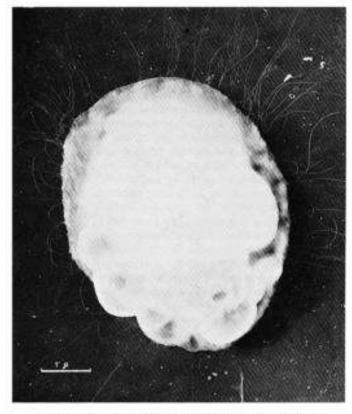


Fig. 1. Electron micrograph of Thioce/um mains showing flagella.

Properties

Spherical shape Radius 5-25 μm Velocity 250 (150-600) μm/s Helical tracks

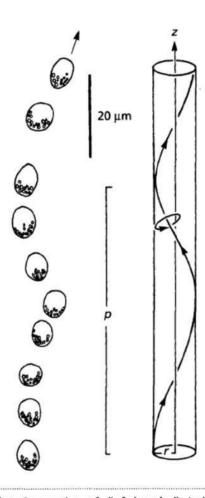

R.Thar,T.Fenchel, Appl.Env.Microbiol.,71,3682 (2005)

TABLE 2. Compared parameters of microbial swimming

Organisms	(µm (µm	B/s*	(10 ⁻¹⁰ dyn)'	Source or reference
Procaryotes	1784	V-256	7921	occupa.
Pseudomonas aeruginosa	55	37	. 8	11
Chromatium okenii	45	5	43	11
Thiospirillum jenense	86	2	285	11
Escherichia coli	16	8	3	11
Bacillus licheniformis	21	7	6	11
Sarcina urrar	28	7	11	11
Vibrio comma	200	50	38	9
Thiovulum majus	600	40	1.696	This work

F.Garcia-Pichel, J.Bact., 171, 3560 (1989)

W. De Boer, J. La Rivière, and A. Houwink, Antonie van Leeuwenhoek 27, 447 (1961).

Fig. 2. Right: Properties of (left-handed) helical swimming: pitch (p), radius (r) and tangential and rotational velocity components. Left: Swimming track in the optimum zone of a *Thiovulum* cell recorded under the compound microscope. Time intervals: 40 ms. In this particular track the tangential velocity was 330 μm s⁻¹, r was 5 μm, p was 65 μm, and the period T was 0-24 s. The swimming velocity in the z-direction was $p/T = 271 \ \mu m s^{-1}$.

Fig.2

Angular velocity

$$T = p/v \cong 0.24s$$
$$\Omega = 2\pi/T \cong 26s^{-1}$$

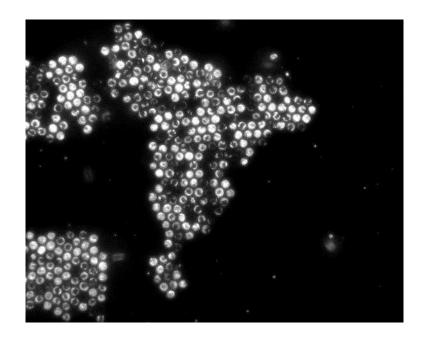
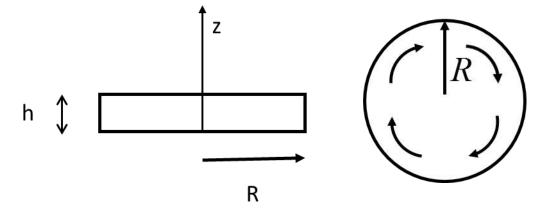
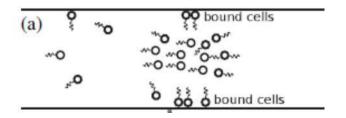





Fig.3

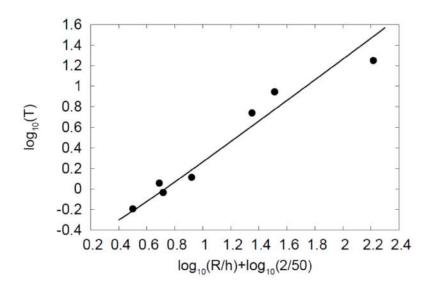


FIG. 2: Period of the crystal rotation T (in seconds) as a function of its size. $4\pi\eta/(n\alpha\Omega_0)=2/50~s$.

Fig.4