Sur ce site

Sur le Web du CNRS


Accueil du site > Productions scientifiques > Séminaires à PHENIX > 2011 > Séminaire 07.07.2011 - 14:00

Séminaire 07.07.2011 - 14:00

par Ali Abou-Hassan, Guillaume Mériguet - 27 juin 2011

Mihaela Delcea de l’université de Bâle donnera un séminaire dont le titre est :

Multicompartmentalization, advanced functionality and mechanical properties of delivery vehicles

à la Bibliothèque du laboratoire PECSA située au 7e étage du Bat F le jeudi 7 juillet à 14h.


In the last years, much research has been focused on development of novel microcapsules for biomedical applications as drug delivery systems. The next generation of carriers is represented by multicompartmentalized micro- and nanocapsules with increased complexity which allows simultaneous delivery of several vectors or biomolecules. The strategies of micro- and nanoencapsulation are overviewed and future trends in the field are highlighted [1]. Mechanical properties of capsules are fundamentally important because they determine capsule stability and integrity. A novel approach to investigate release of encapsulated materials from polyelectrolyte multilayer capsules upon mechanical deformation is presented by combining fluorescence microscopy with AFM force spectroscopy [2]. This data is further correlated with data obtained by analyzing release from microcapsule upon incorporation into living cells induced by electroporation [3]. This mechano-biological approach provides very useful information for designing microcapsules suitable for intra-cellular delivery of peptides, proteins and other molecules, as well as understanding mechanics of cells. Polymersomes assembled from amphiphilic block copolymers have proven to be useful tools as drug delivery systems [4] nanoreactors and sensors [5]. The attachment of targeting ligands or enzymes to the polymersomes, as well as the immobilization of polymer vesicles on surfaces, is of crucial importance in most of the previously mentioned applications. In the last decades, membrane-forming amphiphilic block copolymers with unprecedented mechanical and chemical stability that allow a functional reconstitution of membrane proteins have been developed. The state of the art on how to functionalize block copolymer vesicle surfaces and their applications in biomedicine, surface- and nanoscience are highlighted.

[1] Delcea, M. ; Yashchenok, A.M. ; Videnova, K. ; Kreft, O. ; Möhwald, H. ; Skirtach, A.G., Macromolecular Bioscience 2010, 10, 465-474.

[2] Fernandes, P.A.L. ; Delcea, M. ; Skirtach, A.G. ; Möhwald, H. ; Fery, A., Soft Matter 2010, 6, 1879-1883.

[3] Delcea, M. ; Palankar, R. ; Fernandes, P.A.L. ; Schmidt, S. ; Fery, A. ; Möhwald, H. ; Skirtach, A.G., Small 2010, 6, 2858-2862.

[4] Ahmed, F. ; Pakunlu, R.I. ; Brannan, A. ; Bates, F. ; Minko, T. ; Discher, D.E., J. Control. Release 2006, 116, 150-158.
Broz, P. ; Benito, S.M. ; Saw, C. ; Burger, P. ; Heider, H. ; Pfisterer, M. ; Marsch, S. ; Meier, W. ; Hunziker, P., J. Control. Release 2005, 102, 475-488.

[5] Grzelakowski, M. ; Onaca, O. ; Rigler, P. ; Kumar, M. ; Meier, W., Small 2009, 5, 2545-2548.
Nardin, C. ; Thoeni, S. ; Widmer, J. ; Winterhalter, M. ; Meier, W., Chem. Commun. 2000, 36, 1433-1434.